
UCRL-TR-200405

The Factory Approach to
Creating TSTT Meshes

Tom Epperly

October 21, 2003

Disclaimer

 This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

 This work was performed under the auspices of the U.S. Department of Energy by University of
California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

The Factory Approach to Creating TSTT Meshes

Tom Epperly <tepperly@llnl.gov>

Lawrence Livermore National Laborary
http://www.llnl.gov/CASC/components/

October 21, 2003

Advantages & Costs of the Factory Approach
The factory approach (a.k.a. virtual constructor) hides the details of the class
implementing the TSTT from TSTT users. In version 0.5 of TSTT.sidl, the client hard
codes the name of the implementing class into their code. For example, the client had to
call TSTT::CompleteTSTTMesh::_create(),
TSTT::SubsettableTSTTMesh::_create() or the constructor for one of the
other concrete classes defined. The client is forced to choose from the small set of
possible concrete classes defined in TSTT.sidl. This approach makes it impossible to
support multiple implementations of the TSTT in a single process because each
implementation has to implement the same class.

The factory approach hides the details of mesh creation from the client. The client does
not need to know the name of the implementing class, and the client can dynamically
determine which interfaces are supported by the new mesh. A factory can support
multiple TSTT implementation because each implementation defines its own concrete
classes to implement.

The factory approach does require the TSTT compliant mesh packages to implement a
MeshFactory interface, and everyone needs to link against an implementation of the
Registry. The Registry only has 7 methods that are fairly easy to implement, and
everyone can share one implementation of the Registry.

How to create a TSTT mesh
There are two main ways to create a mesh. The first uses the factory, and the second uses
a service provided by Babel. I provide two examples below on how the factory can be
used. In the first example, the client uses the current default factory. I expect this to be the
most common case because most programs will only have one TSTT implementation
available. In the second example, the client chooses one of several available TSTT
implementations.In the third example, I show how a client can use Babel's
SIDL::Loader interface to create a TSTT mesh.

In the first example, the client requires a mesh that supports the
AdvancedTSTTMeshQuery and ModifiableMesh interfaces.

Example 1
TSTT::Mesh myMesh;
TSTT::AdvancedTSTTMeshQuery atmq;

TSTT::ModifiableMesh mm;
try {
 myMesh = TSTT::Registry::getInstance().

getDefaultFactory().newMesh();
 atmq = myMesh; // try casting to AdvancedTSTTMeshQuery
 mm = myMesh; // try casting to ModifiableMesh
 if (atmq._not_nil() && mm._not_nil()) {
 // rest of code goes here
 }
}
catch (TSTT::Error err) {
 // some step of the creation failed
}

In the second example, the client needs CoreEntitySetQuery and
BooleanSetOperations. The example iterates through all available
MeshFactory's until it finds one that has both interfaces.

Example 2
TSTT::Mesh myMesh;
TSTT::CoreEntitySetQuery cesq;
TSTT::BooleanSetOperations bso;
SIDL::array<TSTT::MeshFactory> factories;
try {
 factories = TSTT::Registry.getInstance().getFactories();
 for(int32_t i = factories.lower(0);
 i <= factories.upper(0); ++i) {
 myMesh = factories.get(i).newMesh();
 cesq = myMesh; // cast to CoreEntitySetQuery
 bso = myMesh; // cast to BooleanSetOperations
 if (bso._not_nil() && cesq._not_nil()) break;
 }
 if (bso._not_nil() && cesq._not_nil()) {
 // insert rest of code using bso & cesq here
 }
}
catch (TSTT::Error err) {
 // some step of the creation failed
}

In both these examples, I assume that the TSTT implementation has registered itself in
the Registry before the example code is run.

There is another way to create an instance of a TSTT mesh if the client knows the fully
qualified name of the class that implements the TSTT interfaces. The client can use the
SIDL::Loader::createClass method assuming the implementation is available as a shared

library or statically linked into the main executable. In this exampe, the client needs the
ModifiableMesh and EntitySetRelations interfaces.

Example 3 – the sneaky Babel trick
const std::string className = “local.TSTT.ImplClass”;
SIDL::BaseInterface bi;
bi = SIDL::Loader::createClass(className);
if (bi._not_nil()) { // load succeeded
 TSTT::EntitySetRelations esr = bi;
 TSTT::ModifiableMesh mm = bi;
 if (esr._not_nil() && mm._not_nil()) {
 // insert rest of code using esd & mm here
 }
}

The main weakness of this approach is how does the application determine the class name
without limiting itself to a single hardwired TSTT implementation.

What Implementations Need to Do
This section describes what developers implementing the TSTT need to do in order to
make their mesh implementation available for clients to use. In this example, the
implementation supports the CoreEntitySetQuery and Tag interfaces. All of the
code included here will work for any non-empty set of supported TSTT interfaces. My
hypothetical implementation is called Gilga. Here is the SIDL file:

package Gilga version 0.0.1 {
 class Mesh implements-all TSTT.CoreEntitySetQuery,
 TSTT.Tag {
 }
 class Factory implements-all TSTT.MeshFactory { }
}

Here is how the Gilga::Factory makes the Gilga::Mesh.I've stripped out the doc
comments and splicer block comments for the sake of brevity.

::std::string
Gilga::Factory_impl::name ()
throw ()

{
 return “Gilga”;
}

::TSTT::Mesh
Gilga::Factory_impl::newMesh ()
throw (

 ::TSTT::Error
)
{
 ::TSTT::Mesh m = Gilga::Mesh::_create();
 return m;
}
The implementation of Gilga::Mesh is not affected by the use of the factory.

The last part of the puzzle is registering the factory with the Registry. This must be
done early in the program execution, so here is an example where it is done first thing in
main()..

int main(int argc, char *argv[])
{
 Gilga::Factory gf = Gilga::Factory::_create();
 TSTT::MeshFactory tf = gf; // cast to generic factory
 TSTT::Registry::getInstance().setDefaultFactory(tf);
 // insert the rest of your application here
}

Some applications may choose a plug-in architecture. In a plugin architecture, TSTT
implementations would be stored in a shared library or dynamically loaded library.
Typically, a framework is responsible for dlopen'ing the shared library and then calling
an initialization routine whose name is a function of the plug-in name. For example, the
gilga plug-in might live in libgilga.so and have an initialization routine named
init_gilga that might look something like the following:

extern “C” int init_gilga(TSTT::FactoryCollection *fc
 /* perhaps other arguments */);
int init_gilga(TSTT::FactoryCollection *fc
 /* perhaps other arguments */) {
 if (registry) {
 Gilga::Factory gf = Gilga::Factory::_create();
 TSTT::MeshFactory mf = gf; // cast to generic factory
 fc->setDefaultFactory(mf);
 return 0; // here I assume 0 means success
 }
 return 1; // ERROR
}

SIDL for TSTT::MeshFactory & TSTT::Registry
Here are the SIDL descriptions of TSTT::MeshFactory and TSTT::Registry.

//===
// Interface for creating mesh objects
//===
/**
 * This interface can create empty mesh objects. Each implementation of the

 * TSTT implements a MeshFactory and registers it with the Registry.
 */
interface MeshFactory {
 //==========================name====================
 /**
 * This method returns the common name of the TSTT
 * implementation. This could be "AOMD", "CUBIT", "Frontier",
 * "Mesquite", "NWGrid", "Opt-MS", "Overture", "Trellis" or the name
 * of some other TSTT implementation. The name is only significant
 * when more than one MeshFactory is registered in the
 * registry. Clients will use the name to select which MeshFactory
 * they want.
 */
 string name();

 //==========================newMesh====================
 /**
 * Create a new, empty Mesh object. This method will either return an
 * allocated Mesh or throw an exception. It will never return a NULL
 * object handle.
 */
 Mesh newMesh() throws Error;
}

//===
// This class maintains a collection of MeshFactory's
//===
/**
 * This class maintains a collection of MeshFactory's. The collection
 * is expected to be small (i.e., less than ten). Frequently, there is
 * only one MeshFactory registered because there is only one TSTT
 * implementation in process.
 *
 * This class is usually used as a singleton. There is only one
 * Registry in any given process, and you retrieve it with
 * getInstance().
 */
class Registry {

 //==========================getInstance====================
 /**
 * Return the singleton Registry object. This will either return a
 * non-NULL object or throw Error. This method never returns a
 * NULL object handle.
 */
 static Registry getInstance() throws Error;

 //==========================addFactory====================
 /**
 * Add a factory to the registry. Adding the same factory
 * twice (or more) is equivalent to adding it once.
 * @param mf the MeshFactory to be registered.
 */
 void addFactory(in MeshFactory mf) throws Error;

 //==========================removeFactory====================
 /**
 * Remove a factory from the registry. If this factory was the default
 * factory, the default factory becomes NULL. It is not an error
 * remove a factory that isn't registered.
 * @param mf the MeshFactory to be removed.
 */
 void removeFactory(in MeshFactory mf) throws Error;

 //==========================getDefaultFactory====================
 /**
 * Add mf to the register (via addFactory) and designate it as
 * the current default factory. You can set the default to NULL
 * by calling this with NULL. Each call to setDefaultFactory
 * displaces the previous default factory.
 * @param mf the new default MeshFactory.
 */
 void setDefaultFactory(in MeshFactory mf) throws Error;

 /**
 * Return the current default factory. If no default factory is
 * currently set, this will throw an exception. This never
 * returns NULL.
 */
 MeshFactory getDefaultFactory() throws Error;

 /**
 * Lookup a factory based on its name. If it's not found,
 * throw an Error exception.
 */
 MeshFactory lookupFactory(in string name) throws Error;

 /**
 * Return an array of all currently registered Mesh factories.
 * If non are registered, this will return a array with
 * zero elements. This list will be sorted alphabetically
 * by factory name.
 */
 array<MeshFactory> getFactories() throws Error;
}

